Displaying 61 – 80 of 127

Showing per page

The Laguerre inequality and the distribution of zeros of entire functions

George Csordas, Alain Escassut (2005)

Annales mathématiques Blaise Pascal

The Laguerre inequality and the distribution of zeros of real entire functions are investigated with the aid of certain infinite-order differential operators. The paper includes new proofs, problems, conjectures and many illustrative examples and counterexamples.

The Löwner-Kufarev representations for domains with analytic boundaries

Dmitri Prokhorov (2011)

Annales UMCS, Mathematica

We consider the Löwner-Kufarev differential equations generating univalent maps of the unit disk onto domains bounded by analytic Jordan curves. A solution to the problem of the maximal lifetime shows how long a representation of such functions admits using infinitesimal generators analytically extendable outside the unit disk. We construct a Löwner-Kufarev chain consisting of univalent quadratic polynomials and compare the Löwner-Kufarev representations of bounded and arbitrary univalent functions....

The multiplicity of the zero at 1 of polynomials with constrained coefficients

Peter Borwein, Tamás Erdélyi, Géza Kós (2013)

Acta Arithmetica

For n ∈ ℕ, L > 0, and p ≥ 1 let κ p ( n , L ) be the largest possible value of k for which there is a polynomial P ≠ 0 of the form P ( x ) = j = 0 n a j x j , | a 0 | L ( j = 1 n | a j | p 1/p , aj ∈ ℂ , such that ( x - 1 ) k divides P(x). For n ∈ ℕ and L > 0 let κ ( n , L ) be the largest possible value of k for which there is a polynomial P ≠ 0 of the form P ( x ) = j = 0 n a j x j , | a 0 | L m a x 1 j n | a j | , a j , such that ( x - 1 ) k divides P(x). We prove that there are absolute constants c₁ > 0 and c₂ > 0 such that c 1 ( n / L ) - 1 κ ( n , L ) c 2 ( n / L ) for every L ≥ 1. This complements an earlier result of the authors valid for every n ∈ ℕ and L ∈ (0,1]. Essentially...

Currently displaying 61 – 80 of 127