Displaying 801 – 820 of 2730

Showing per page

Good metric spaces without good parameterizations.

Stephen Semmes (1996)

Revista Matemática Iberoamericana

A classical problem in geometric topology is to recognize when a topological space is a topological manifold. This paper addresses the question of when a metric space admits a quasisymmetric parametrization by providing examples of spaces with many Eucledian-like properties which are nonetheless substantially different from Euclidean geometry. These examples are geometrically self-similar versions of classical topologically self-similar examples from geometric topology, and they can be realized...

Growth of polynomials whose zeros are outside a circle

K. Dewan, Sunil Hans (2008)

Annales UMCS, Mathematica

If p(z) be a polynomial of degree n, which does not vanish in |z| < k, k < 1, then it was conjectured by Aziz [Bull. Austral. Math. Soc. 35 (1987), 245-256] that [...] In this paper, we consider the case k < r < 1 and present a generalization as well as improvement of the above inequality.

Currently displaying 801 – 820 of 2730