Displaying 1401 – 1420 of 2728

Showing per page

On subordination for classes of non-Bazilevič type

Rabha Ibrahim, Maslina Darus, Nikola Tuneski (2010)

Annales UMCS, Mathematica

We give some subordination results for new classes of normalized analytic functions containing differential operator of non-Bazilevič type in the open unit disk. By using Jack's lemma, sufficient conditions for this type of operator are also discussed.

On supports of dynamical laminations and biaccessible points in polynomial Julia sets

Stanislav K. Smirnov (2001)

Colloquium Mathematicae

We use Beurling estimates and Zdunik's theorem to prove that the support of a lamination of the circle corresponding to a connected polynomial Julia set has zero length, unless f is conjugate to a Chebyshev polynomial. Equivalently, except for the Chebyshev case, the biaccessible points in the connected polynomial Julia set have zero harmonic measure.

On the analytic capacity and curvature of some Cantor sets with non-σ-finite length.

Pertti Mattila (1996)

Publicacions Matemàtiques

We show that if a Cantor set E as considered by Garnett in [G2] has positive Hausdorff h-measure for a non-decreasing function h satisfying ∫01 r−3 h(r)2 dr < ∞, then the analytic capacity of E is positive. Our tool will be the Menger three-point curvature and Melnikov’s identity relating it to the Cauchy kernel. We shall also prove some related more general results.

Currently displaying 1401 – 1420 of 2728