Sequence space representations for (FN)-algebras of entire functions modulo closed ideals
2000 Mathematics Subject Classification: 26C05, 26C10, 30A12, 30D15, 42A05, 42C05.In this paper we present some inequalities about the moduli of the coefficients of polynomials of the form f (x) : = еn = 0nan xn, where a0, ј, an О C. They can be seen as generalizations, refinements or analogues of the famous inequality of P. L. Chebyshev, according to which |an| Ј 2n-1 if | еn = 0n an xn | Ј 1 for -1 Ј x Ј 1.
We introduce certain spaces of sequences which can be used to characterize spaces of functions of exponential type. We present a generalized version of the sampling theorem and a "nonorthogonal wavelet decomposition" for the elements of these spaces of sequences. In particular, we obtain a discrete version of the so-called φ-transform studied in [6] [8]. We also show how these new spaces and the corresponding decompositions can be used to study multiplier operators on Besov spaces.
We consider the functional equation f(z+σ) - f(z) = g(z) where σ is a complex number, f and g are entire functions of a complex variable z, with growth conditions. We prove the existence of certain types of solutions of this equation by an a priori estimate method in certain weighted L2-spaces.