On a functional equation. (Short Communication).
We prove a theorem on the growth of a solution of a kth-order linear differential equation. From this we obtain some uniqueness theorems. Our results improve several known results. Some examples show that the results are best possible.
Several sets of quaternionic functions are described and studied with respect to hyperholomorphy, addition and (non-commutative) multiplication, on open sets of ℍ, then Hamilton 4-manifolds analogous to Riemann surfaces, for ℍ instead of ℂ, are defined, and so begin to describe a class of four-dimensional manifolds.
The motivation of this paper is to study the uniqueness of meromorphic functions sharing a nonzero polynomial with the help of the idea of normal family. The result of the paper improves and generalizes the recent result due to Zhang and Xu [24]. Our another remarkable aim is to solve an open problem as posed in the last section of [24].
Following the attracting and preperiodic cases, in this paper we prove the existence of weakly repelling fixed points for transcendental meromorphic maps, provided that their Fatou set contains a multiply connected parabolic basin. We use quasi-conformal surgery and virtually repelling fixed point techniques.
Let f be a transcendental entire function of finite lower order, and let be rational functions. For 0 < γ < ∞ let B(γ):= πγ/sinπγ if γ ≤ 0.5, B(γ):= πγ if γ > 0.5. We estimate the upper and lower logarithmic density of the set .
In this article, we study the uniqueness problem of meromorphic functions in m-punctured complex plane Ω and obtain that there exist two sets S1, S2 with ♯S1 = 2 and ♯S2 = 9, such that any two admissible meromorphic functions f and g in Ω must be identical if f, g share S1, S2 I M in Ω.