Über analytische Funktionen, die im Komplement kleiner Kreisscheiben groß sind.
This paper deals with the uniqueness problem for meromorphic functions sharing one value with finite weight. Our results generalize those of Fang, Hong, Bhoosnurmath and Dyavanal.
With the idea of normal family we study the uniqueness of meromorphic functions and when and share two values, where is any nonzero polynomial. The result of this paper significantly improves and generalizes the result due to A. Banerjee and S. Majumder (2018).
We prove some uniqueness theorems for meromorphic functions and their derivatives that share a meromorphic function whose order is less than those of the above meromorphic functions. The results in this paper improve those given by G. G. Gundersen & L. Z. Yang, J. P. Wang, J. M. Chang & Y. Z. Zhu, and others. Some examples are provided to show that our results are the best possible.
We deal with the uniqueness problem for analytic functions sharing four distinct values in an angular domain and obtain some theorems which improve the result given by Cao and Yi [J. Math. Anal. Appl. 358 (2009)].
We deal with uniqueness of entire functions whose difference polynomials share a nonzero polynomial CM, which corresponds to Theorem 2 of I. Laine and C. C. Yang [Proc. Japan Acad. Ser. A 83 (2007), 148-151] and Theorem 1.2 of K. Liu and L. Z. Yang [Arch. Math. 92 (2009), 270-278]. We also deal with uniqueness of entire functions whose difference polynomials share a meromorphic function of a smaller order, improving Theorem 5 of J. L. Zhang [J. Math. Anal. Appl. 367 (2010), 401-408], where the entire...
This paper is devoted to the study of uniqueness of meromorphic functions sharing only one value or fixed points. We improve some related results due to J. L. Zhang [Comput. Math. Appl. 56 (2008), 3079-3087] and M. L. Fang [Comput. Math. Appl. 44 (2002), 823-831], and we supplement some results given by M. L. Fang and X. H. Hua [J. Nanjing Univ. Math. Biquart. 13 (1996), 44-48] and by C. C. Yang and X. H. Hua [Ann. Acad. Sci. Fenn. Math. 22 (1997), 395-406].