Entire functions that share fixed-points.
We investigate the uniqueness of entire functions sharing values or small functions with their derivatives. One of our results gives a necessary condition on the Nevanlinna deficiency of the entire function f sharing one nonzero finite value CM with its derivative f'. Some applications of this result are provided. Finally, we prove some further results on small function sharing.
We investigate the existence and uniqueness of entire solutions of order zero of the nonlinear q-difference equation of the form fⁿ(z) + L(z) = p(z), where p(z) is a polynomial and L(z) is a linear differential-q-difference polynomial of f with small growth coefficients. We also study the zeros distribution of some special type of q-difference polynomials.
Due to a technical error, part of a sentence was omitted on the top of page 8. The first line should read: “where , or , means the number of folds of the covering ending at p, i.e. covering a neighbourhood of p in without covering p itself”.
This paper is devoted to exceptional values of meromorphic functions and of their derivatives on annuli. Some facts on exceptional values for meromorphic functions in the complex plane which were established by Singh, Gopalakrishna and Bhoosnurmath [Math. Ann. 191 (1971), 121-142, and Ann. Polon. Math. 35 (1977/78), 99-105] will be considered on annuli.
In this paper we obtain that there are no transcendental entire solutions with finite order of some nonlinear difference equations of different forms.
The purpose of this article is twofold. The first is to show a criterion for the normality of holomorphic mappings into Abelian varieties; an extension theorem for such mappings is also given. The second is to study the convergence of meromorphic mappings into complex projective varieties. We introduce the concept of d-convergence and give a criterion of d-normality of families of meromorphic mappings.