Page 1

Displaying 1 – 10 of 10

Showing per page

Interpolating sequences and the Nevanlinna Pick problem.

Arne Stray (1991)

Publicacions Matemàtiques

The extremal solutions to the Nevanlinna Pick problem are studied. If there is more than one solution, Nevanlinna showed that all extremal solutions are inner functions. With some extra information on the interpolation data we find that the extremal solutions are Blaschke products whose zeroes form a finite union of interpolating sequences.

Interpolation of bounded sequences

Francesc Tugores (2010)

Czechoslovak Mathematical Journal

This paper deals with an interpolation problem in the open unit disc 𝔻 of the complex plane. We characterize the sequences in a Stolz angle of 𝔻 , verifying that the bounded sequences are interpolated on them by a certain class of not bounded holomorphic functions on 𝔻 , but very close to the bounded ones. We prove that these interpolating sequences are also uniformly separated, as in the case of the interpolation by bounded holomorphic functions.

Interpolation operators on the space of holomorphic functions on the unit circle

Josef Kofroň (2001)

Applications of Mathematics

The aim of the paper is to get an estimation of the error of the general interpolation rule for functions which are real valued on the interval [ - a , a ] , a ( 0 , 1 ) , have a holomorphic extension on the unit circle and are quadratic integrable on the boundary of it. The obtained estimate does not depend on the derivatives of the function to be interpolated. The optimal interpolation formula with mutually different nodes is constructed and an error estimate as well as the rate of convergence are obtained. The general...

Currently displaying 1 – 10 of 10

Page 1