A boundary value problem for Hermitian monogenic functions.
Page 1
Blaya, Ricardo Abreu, Reyes, Juan Bory, Peña, Dixan Peña, Sommen, Frank (2008)
Boundary Value Problems [electronic only]
Hongfen Yuan (2017)
Czechoslovak Mathematical Journal
Using a distributional approach to integration in superspace, we investigate a Cauchy-Pompeiu integral formula in super Dunkl-Clifford analysis and several related results, such as Stokes formula, Morera's theorem and Painlevé theorem for super Dunkl-monogenic functions. These results are nice generalizations of well-known facts in complex analysis.
Alayón-Solarz, Daniel (2009)
Boletín de la Asociación Matemática Venezolana
Li, Liulan (2011)
The New York Journal of Mathematics [electronic only]
Wada, Masaaki (1998)
Annales Academiae Scientiarum Fennicae. Mathematica
Sprössig, W., Gürlebeck, K. (1984)
Proceedings of the 12th Winter School on Abstract Analysis
Kravchenko, V.V. (2000)
Zeitschrift für Analysis und ihre Anwendungen
Toma Tonev (1982)
Banach Center Publications
Alain Escassut (1969/1970)
Séminaire de théorie des nombres de Bordeaux
De Bie, Hendrik (2008)
SIGMA. Symmetry, Integrability and Geometry: Methods and Applications [electronic only]
Martin Sikora (2010)
Archivum Mathematicum
The Dirac equation for spinor-valued fields on the Minkowski space of even dimension form a hyperbolic system of partial differential equations. In the paper, we are showing how to reconstruct the solution from initial data given on the upper sheet of the hyperboloid. In particular, we derive an integral formula expressing the value of in a chosen point as an integral over a compact cycle given by the intersection of the null cone with in the Minkowski space .
Souček, Vladimír (1981)
Abstracta. 9th Winter School on Abstract Analysis
Laville, Guy, Lehman, Eric (2004)
Annales Academiae Scientiarum Fennicae. Mathematica
K. Leschke, K. Moriya (2016)
Complex Manifolds
In this paper we give a survey of methods of Quaternionic Holomorphic Geometry and of applications of the theory to minimal surfaces. We discuss recent developments in minimal surface theory using integrable systems. In particular, we give the Lopez–Ros deformation and the simple factor dressing in terms of the Gauss map and the Hopf differential of the minimal surface. We illustrate the results for well–known examples of minimal surfaces, namely the Riemann minimal surfaces and the Costa surface....
Eelbode, D. (2004)
Annales Academiae Scientiarum Fennicae. Mathematica
Page 1