Page 1

Displaying 1 – 19 of 19

Showing per page

On a noncommutative algebraic geometry

(2015)

Banach Center Publications

Several sets of quaternionic functions are described and studied with respect to hyperholomorphy, addition and (non-commutative) multiplication, on open sets of ℍ, then Hamilton 4-manifolds analogous to Riemann surfaces, for ℍ instead of ℂ, are defined, and so begin to describe a class of four-dimensional manifolds.

On representations of real analytic functions by monogenic functions

Hongfen Yuan (2019)

Czechoslovak Mathematical Journal

Using the method of normalized systems of functions, we study one representation of real analytic functions by monogenic functions (i.e., solutions of Dirac equations), which is an Almansi’s formula of infinite order. As applications of the representation, we construct solutions of the inhomogeneous Dirac and poly-Dirac equations in Clifford analysis.

On the periodicity of trigonometric functions generalized to quotient rings of R[x]

Claude Gauthier (2006)

Open Mathematics

We apply a method of Euler to algebraic extensions of sets of numbers with compound additive inverse which can be seen as quotient rings of R[x]. This allows us to evaluate a generalization of Riemann’s zeta function in terms of the period of a function which generalizes the function sin z. It follows that the functions generalizing the trigonometric functions on these sets of numbers are not periodic.

On the zeros of a quaternionic polynomial: An extension of the Eneström-Kakeya theorem

Abdullah Mir (2023)

Czechoslovak Mathematical Journal

We present some results on the location of zeros of regular polynomials of a quaternionic variable. We derive new bounds of Eneström-Kakeya type for the zeros of these polynomials by virtue of a maximum modulus theorem and the structure of the zero sets of a regular product established in the newly developed theory of regular functions and polynomials of a quaternionic variable. Our results extend some classical results from complex to the quaternionic setting as well.

Currently displaying 1 – 19 of 19

Page 1