Loading [MathJax]/extensions/MathZoom.js
We deal with the so-called Ahlfors regular sets (also known as -regular sets) in metric spaces. First we show that those sets correspond to a certain class of tree-like structures. Building on this observation we then study the following question: Under which conditions does the limit exist, where is an -regular set and is for instance the -packing number of ?
In this article we study the Ahlfors regular conformal gauge of a compact metric space , and its conformal dimension . Using a sequence of finite coverings of , we construct distances in its Ahlfors regular conformal gauge of controlled Hausdorff dimension. We obtain in this way a combinatorial description, up to bi-Lipschitz homeomorphisms, of all the metrics in the gauge. We show how to compute using the critical exponent associated to the combinatorial modulus.
For every ε > 0, any subset of ℝⁿ with Hausdorff dimension larger than (1-ε)n must have ultrametric distortion larger than 1/(4ε).
Currently displaying 1 –
3 of
3