Page 1

Displaying 1 – 2 of 2

Showing per page

Smoothness of Green's functions and Markov-type inequalities

Leokadia Białas-Cież (2011)

Banach Center Publications

Let E be a compact set in the complex plane, g E be the Green function of the unbounded component of E with pole at infinity and M ( E ) = s u p ( | | P ' | | E ) / ( | | P | | E ) where the supremum is taken over all polynomials P | E 0 of degree at most n, and | | f | | E = s u p | f ( z ) | : z E . The paper deals with recent results concerning a connection between the smoothness of g E (existence, continuity, Hölder or Lipschitz continuity) and the growth of the sequence M ( E ) n = 1 , 2 , . . . . Some additional conditions are given for special classes of sets.

Currently displaying 1 – 2 of 2

Page 1