Page 1

Displaying 1 – 9 of 9

Showing per page

A stability theorem for elliptic Harnack inequalities

Richard F. Bass (2013)

Journal of the European Mathematical Society

We prove a stability theorem for the elliptic Harnack inequality: if two weighted graphs are equivalent, then the elliptic Harnack inequality holds for harmonic functions with respect to one of the graphs if and only if it holds for harmonic functions with respect to the other graph. As part of the proof, we give a characterization of the elliptic Harnack inequality.

Comportement harmonique des densités conformes et frontière de Martin

Thomas Roblin (2011)

Bulletin de la Société Mathématique de France

Traitant la série de Poincaré d’un groupe discret d’isométries en courbure négative comme un noyau de Green, on établit une théorie du potentiel assez comparable à la théorie classique pour affirmer un parallèle entre densités conformes à la Patterson-Sullivan et densités harmoniques, et notamment définir une frontière de Martin où les densités ergodiques forment la partie minimale, et enfin l’identifier géométriquement sous hypothèse d’hyperbolicité.

Musielak-Orlicz-Sobolev spaces on metric measure spaces

Takao Ohno, Tetsu Shimomura (2015)

Czechoslovak Mathematical Journal

Our aim in this paper is to study Musielak-Orlicz-Sobolev spaces on metric measure spaces. We consider a Hajłasz-type condition and a Newtonian condition. We prove that Lipschitz continuous functions are dense, as well as other basic properties. We study the relationship between these spaces, and discuss the Lebesgue point theorem in these spaces. We also deal with the boundedness of the Hardy-Littlewood maximal operator on Musielak-Orlicz spaces. As an application of the boundedness of the Hardy-Littlewood...

Poincaré inequality and Hajłasz-Sobolev spaces on nested fractals

Katarzyna Pietruska-Pałuba, Andrzej Stós (2013)

Studia Mathematica

Given a nondegenerate harmonic structure, we prove a Poincaré-type inequality for functions in the domain of the Dirichlet form on nested fractals. We then study the Hajłasz-Sobolev spaces on nested fractals. In particular, we describe how the "weak"-type gradient on nested fractals relates to the upper gradient defined in the context of general metric spaces.

Riemannian Polyhedra and Liouville-Type Theorems for Harmonic Maps

Zahra Sinaei (2014)

Analysis and Geometry in Metric Spaces

This paper is a study of harmonic maps fromRiemannian polyhedra to locally non-positively curved geodesic spaces in the sense of Alexandrov. We prove Liouville-type theorems for subharmonic functions and harmonic maps under two different assumptions on the source space. First we prove the analogue of the Schoen-Yau Theorem on a complete pseudomanifolds with non-negative Ricci curvature. Then we study 2-parabolic admissible Riemannian polyhedra and prove some vanishing results on them.

The Besov capacity in metric spaces

Juho Nuutinen (2016)

Annales Polonici Mathematici

We study a capacity theory based on a definition of Hajłasz-Besov functions. We prove several properties of this capacity in the general setting of a metric space equipped with a doubling measure. The main results of the paper are lower bound and upper bound estimates for the capacity in terms of a modified Netrusov-Hausdorff content. Important tools are γ-medians, for which we also prove a new version of a Poincaré type inequality.

The Poincaré Inequality Does Not Improve with Blow-Up

Andrea Schioppa (2016)

Analysis and Geometry in Metric Spaces

For each β > 1 we construct a family Fβ of metric measure spaces which is closed under the operation of taking weak-tangents (i.e. blow-ups), and such that each element of Fβ admits a (1, P)-Poincaré inequality if and only if P > β.

The p-Royden and p-Harmonic Boundaries for Metric Measure Spaces

Marcello Lucia, Michael J. Puls (2015)

Analysis and Geometry in Metric Spaces

Let p be a real number greater than one and let X be a locally compact, noncompact metric measure space that satisfies certain conditions. The p-Royden and p-harmonic boundaries of X are constructed by using the p-Royden algebra of functions on X and a Dirichlet type problem is solved for the p-Royden boundary. We also characterize the metric measure spaces whose p-harmonic boundary is empty.

Trace inequalities for fractional integrals in grand Lebesgue spaces

Vakhtang Kokilashvili, Alexander Meskhi (2012)

Studia Mathematica

rning the boundedness for fractional maximal and potential operators defined on quasi-metric measure spaces from L p ) , θ ( X , μ ) to L q ) , q θ / p ( X , ν ) (trace inequality), where 1 < p < q < ∞, θ > 0 and μ satisfies the doubling condition in X. The results are new even for Euclidean spaces. For example, from our general results D. Adams-type necessary and sufficient conditions guaranteeing the trace inequality for fractional maximal functions and potentials defined on so-called s-sets in ℝⁿ follow. Trace inequalities...

Currently displaying 1 – 9 of 9

Page 1