The Functional Equation
We prove that the Martin compactification of a plane domain is homeomorphic to a subset of the two-dimensional sphere.
Ever since the discovery of the connection between the Menger-Melnikov curvature and the Cauchy kernel in the L2 norm, and its impressive utility in the analytic capacity problem, higher dimensional analogues have been coveted. The lesson from 1-sets was that any such (nontrivial, nonnegative) expression, using the Riesz kernels for m-sets in Rn, even in any Lk norm (k ∈ N), would probably carry nontrivial information on whether the boundedness of these kernels in the appropriate norm implies rectifiability...
The Dirichlet problem for the Laplace equation for a planar domain with piecewise-smooth boundary is studied using the indirect integral equation method. The domain is bounded or unbounded. It is not supposed that the boundary is connected. The boundary conditions are continuous or p-integrable functions. It is proved that a solution of the corresponding integral equation can be obtained using the successive approximation method.
The unique solvability of the problem Δu = 0 in G⁺ ∪ G¯, u₊ - au_ = f on ∂G⁺, n⁺·∇u₊ - bn⁺·∇u_ = g on ∂G⁺ is proved. Here a, b are positive constants and g is a real measure. The solution is constructed using the boundary integral equation method.
In this paper we study a free boundary problem appearing in electromagnetism and its numerical approximation by means of boundary integral methods. Once the problem is written in a equivalent integro-differential form, with the arc parametrization of the boundary as unknown, we analyse it in this new setting. Then we consider Galerkin and collocation methods with trigonometric polynomial and spline curves as approximate solutions.
In this paper we study a free boundary problem appearing in electromagnetism and its numerical approximation by means of boundary integral methods. Once the problem is written in a equivalent integro-differential form, with the arc parametrization of the boundary as unknown, we analyse it in this new setting. Then we consider Galerkin and collocation methods with trigonometric polynomial and spline curves as approximate solutions.
This work presents an effective and accurate method for determining, from a theoretical and computational point of view, the time-harmonic Green's function of an isotropic elastic half-plane where an impedance boundary condition is considered. This method, based on the previous work done by Durán et al. (cf. [Numer. Math.107 (2007) 295–314; IMA J. Appl. Math.71 (2006) 853–876]) for the Helmholtz equation in a half-plane, combines appropriately analytical and numerical techniques, which has an important...
In this paper we outline some recent results concerning the existence of steady solutions to the Euler equation in with a prescribed set of (possibly knotted and linked) thin vortex tubes.