Feller semigroups, Dirchlet forms, and pseudo differential operators.
Mathematics Subject Classification: 26A33, 31C25, 35S99, 47D07.Wentzell boundary value problem for pseudo-differential operators generating Markov processes but not satisfying the transmission condition are not well understood. Studying fractional derivatives and fractional powers of such operators gives some insights in this problem. Since an L^p – theory for such operators will provide a helpful tool we investigate the L^p –domains of certain model operators.* This work is partially supported...
We prove a Hardy inequality for the fractional Laplacian on the interval with the optimal constant and additional lower order term. As a consequence, we also obtain a fractional Hardy inequality with the best constant and an extra lower order term for general domains, following the method of M. Loss and C. Sloane [J. Funct. Anal. 259 (2010)].
We prove a fractional version of the Hardy-Sobolev-Maz’ya inequality for arbitrary domains and norms with p ≥ 2. This inequality combines the fractional Sobolev and the fractional Hardy inequality into a single inequality, while keeping the sharp constant in the Hardy inequality.
We prove for a large class of symmetric pseudo differential operators that they generate a Feller semigroup and therefore a Dirichlet form. Our construction uses the Yoshida-Hille-Ray Theorem and a priori estimates in anisotropic Sobolev spaces. Using these a priori estimates it is possible to obtain further information about the stochastic process associated with the Dirichlet form under consideration.