The Cauchy kernel for cones
A new representation of the Cauchy kernel for an arbitrary acute convex cone Γ in ℝⁿ is found. The domain of holomorphy of is described. An estimation of the growth of near the singularities is given.
A new representation of the Cauchy kernel for an arbitrary acute convex cone Γ in ℝⁿ is found. The domain of holomorphy of is described. An estimation of the growth of near the singularities is given.
Let be the open upper light cone in with respect to the Lorentz product. The connected linear Lorentz group acts on and therefore diagonally on the -fold product where We prove that the extended future tube is a domain of holomorphy.
In this survey article we describe how the recent work in quantization in multi-variable complex geometry (domains of holomorphy, symmetric domains, tube domains, etc.) leads to interesting results and problems in C*-algebras which can be viewed as examples of the "non-commutative geometry" in the sense of A. Connes. At the same time, one obtains new functional calculi (of pseudodifferential type) with possible applications to partial differential equations and group representations.