Previous Page 2

Displaying 21 – 27 of 27

Showing per page

Removable singularities for weighted Bergman spaces

Anders Björn (2006)

Czechoslovak Mathematical Journal

We develop a theory of removable singularities for the weighted Bergman space 𝒜 μ p ( Ω ) = { f analytic in Ω Ω | f | p d μ < } , where μ is a Radon measure on . The set A is weakly removable for 𝒜 μ p ( Ω A ) if 𝒜 μ p ( Ω A ) Hol ( Ω ) , and strongly removable for 𝒜 μ p ( Ω A ) if 𝒜 μ p ( Ω A ) = 𝒜 μ p ( Ω ) . The general theory developed is in many ways similar to the theory of removable singularities for Hardy H p spaces, B M O and locally Lipschitz spaces of analytic functions, including the existence of counterexamples to many plausible properties, e.g. the union of two compact removable singularities needs not be removable....

Currently displaying 21 – 27 of 27

Previous Page 2