Smoothing q-convex functions and vanishing theorems.
Let M be a smooth q-concave CR submanifold of codimension k in . We solve locally the -equation on M for (0,r)-forms, 0 ≤ r ≤ q-1 or n-k-q+1 ≤ r ≤ n-k, with sharp interior estimates in Hölder spaces. We prove the optimal regularity of the -operator on (0,q)-forms in the same spaces. We also obtain estimates at top degree. We get a jump theorem for (0,r)-forms (r ≤ q-2 or r ≥ n-k-q+1) which are CR on a smooth hypersurface of M. We prove some generalizations of the Hartogs-Bochner-Henkin extension...