Page 1

Displaying 1 – 12 of 12

Showing per page

Derivees tangentielles des fonctions de la classe k , α dans les domaines de type fini de ℂ²

Laurent Verdoucq (2002)

Annales Polonici Mathematici

Let Ω be a domain of finite type in ℂ² and let f be a function holomorphic in Ω and belonging to k , α ( Ω ̅ ) . We prove the existence of boundary values for some suitable derivatives of f of order greater than k. The gain of derivatives holds in the complex-tangential direction and it is precisely related to the geometry of ∂Ω. Then we prove a property of non-isotropic Hölder regularity for these boundary values. This generalizes some results given by J. Bruna and J. M. Ortega for the unit ball.

Currently displaying 1 – 12 of 12

Page 1