Déformations des feuilletages transversalement holomorphes à type différentiable fixé.
Let F be a transversely holomorphic foliation on a compact manifold. We show the existence of a versal space for those deformations of F which keep fixed its differentiable type if F is Hermitian or if F has complex codimension one and admits a transverse projectable connection. We also prove the existence of a versal space of deformations for the complex structures on a Lie group invariant by a cocompact subgroup.