On Algebraicity of Global Real Analytic Sets and Functions
Given a non-singular holomorphic foliation on a compact manifold we analyze the relationship between the versal spaces and of deformations of as a holomorphic foliation and as a transversely holomorphic foliation respectively. With this purpose, we prove the existence of a versal unfolding of parametrized by an analytic space isomorphic to where is smooth and : is the forgetful map. The map is shown to be an epimorphism in two situations: (i) if , where is the sheaf of...
In this paper we show that a 1-convex (i.e., strongly pseudoconvex) manifold , with 1- dimensional exceptional set and finitely generated second homology group , is embeddable in if and only if is Kähler, and this case occurs only when does not contain any effective curve which is a boundary.
In this paper, we show that if and are algebraic real hypersurfaces in (possibly different) complex spaces of dimension at least two and if is a holomorphic mapping defined near a neighborhood of so that , then is also algebraic. Our proof is based on a careful analysis on the invariant varieties and reduces to the consideration of many cases. After a slight modification, the argument is also used to prove a reflection principle, which allows our main result to be stated for mappings...