The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The local Phragmén-Lindelöf condition for analytic varieties in complex n-space was introduced by Hörmander and plays an important role in various areas of analysis. Recently, new necessary geometric properties for a variety satisfying this condition were derived by the present authors. These results are now applied to investigate the homogeneous polynomials P with real coefficients that are stable in the following sense: Whenever f is a holomorphic function that is defined in some neighborhood...
Let be a complex manifold with strongly pseudoconvex boundary . If is a defining function for , then is plurisubharmonic on a neighborhood of in , and the (real)
2-form is a symplectic structure on the complement of in a neighborhood of in ; it blows up along .
The Poisson structure obtained by inverting extends smoothly across and determines a contact structure on which is the same as the one induced by the complex structure. When is compact, the Poisson structure near...
Currently displaying 1 –
2 of
2