Sobolev estimates for the ?-Neumann operator on domains in Cn admitting a defining function that is plurisubharmonic on the boundary.
Il est montré que la condition de Blaschke est nécessaire et suffisante pour qu’un sous-ensemble analytique du domaine soit l’ensemble des zéros d’une fonction de la classe de Nevanlinna.
In this paper we investigate some applications of the trace condition for pluriharmonic functions on a smooth, bounded domain in Cn. This condition, related to the normal component on ∂D of the ∂-operator, permits us to study the Neumann problem for pluriharmonic functions and the ∂-problem for (0,1)-forms on D with solutions having assigned real part on the boundary.
We present a collection of problems in complex analysis and complex dynamics in several variables.
We study the spectrum of certain Banach algebras of holomorphic functions defined on a domain Ω where ∂̅-problems with certain estimates can be solved. We show that the projection of the spectrum onto ℂⁿ equals Ω̅ and that the fibers over Ω are trivial. This is used to solve a corona problem in the special case where all but one generator are continuous up to the boundary.
Dans cet article on montre que toute a une décomposition avec pour les domaines pseudoconvexes à frontière réelle-analytique et aussi pour les domaines pseudoconvexes pour lesquels le résultat soit valable localement.
Viene studiata l'equazione per le forme regolari sulla chiusura dell'intersezione di domini pseudoconvessi. Si costruisce un operatore soluzione in forma integrale e sotto ipotesi opportune si ottengono stime della soluzione nelle norme .
We give a short proof of the extension theorem of Ohsawa-Takegoshi. The same method also gives a generalization of the -theorem of Donnelly and Fefferman for the case of -forms.
Let be a Stein manifold of complex dimension and be a relatively compact domain with smooth boundary in . Assume that is a weakly -pseudoconvex domain in . The purpose of this paper is to establish sufficient conditions for the closed range of on . Moreover, we study the -problem on . Specifically, we use the modified weight function method to study the weighted -problem with exact support in . Our method relies on the -estimates by Hörmander (1965) and by Kohn (1973).