Radial solutions to a superlinear Dirichlet problem using Bessel functions.
A method is given to find a recurrence relation for the coefficients of the series expansion of a function f with respect to classical orthogonal polynomials of a discrete variable, which follows from a linear difference equation satisfied by f.
We show that polynomials defined by recurrence relations with periodic coefficients may be represented with the help of Chebyshev polynomials of the second kind.
Let be any sequence of classical orthogonal polynomials. Further, let f be a function satisfying a linear differential equation with polynomial coefficients. We give an algorithm to construct, in a compact form, a recurrence relation satisfied by the coefficients in . A systematic use of the basic properties (including some nonstandard ones) of the polynomials results in obtaining a low order of the recurrence.