Page 1 Next
Displaying 1 – 20 of 40
La multiplication d'une forme linéaire par une fraction rationnelle. Application aux formes de Laguerre-Hahn
J. Dini, P. Maroni (1990)
Annales Polonici Mathematici
Laguerre polynomials with four parameters
František Púchovský (1998)
Mathematica Slovaca
Laguerre series and the Cauchy integral representation
Peter Rusev (1985)
Annales Polonici Mathematici
Laguerre-type Bell polynomials.
Natalini, P., Ricci, P.E. (2006)
International Journal of Mathematics and Mathematical Sciences
Laguerre-type exponentials, and the relevant -circular and -hyperbolic functions.
Dattoli, Giuseppe, Ricci, Paolo E. (2003)
Georgian Mathematical Journal
Landau and Kolmogoroff type polynomial inequalities.
Alves, Claudia R.R., Dimitrov, Dimitar K. (1999)
Journal of Inequalities and Applications [electronic only]
Laplace transform pairs of N-dimensions.
Dahiya, R.S. (1985)
International Journal of Mathematics and Mathematical Sciences
Laplace transform pairs of N-dimensions and second order linear partial differential equations with constant coefficients.
Aghili, A., Salkhordeh Moghaddam, B. (2008)
Annales Mathematicae et Informaticae
Left-definite variations of the classical Fourier expansion theorem.
Littlejohn, L.L., Zettl, A. (2007)
ETNA. Electronic Transactions on Numerical Analysis [electronic only]
Legendre polynomials and supercongruences
Zhi-Hong Sun (2013)
Acta Arithmetica
Let p > 3 be a prime, and let Rₚ be the set of rational numbers whose denominator is not divisible by p. Let Pₙ(x) be the Legendre polynomials. In this paper we mainly show that for m,n,t ∈ Rₚ with m≢ 0 (mod p), and , where (a/p) is the Legendre symbol and [x] is the greatest integer function. As an application we solve some conjectures of Z. W. Sun and the author concerning , where m is an integer not divisible by p.
Leonard pairs from the equitable basis of .
Alnajjar, Hasan, Curtin, Brian (2010)
ELA. The Electronic Journal of Linear Algebra [electronic only]
Les polynômes orthogonaux auto-associés modulo deux
Maroni, P. (1983/1984)
Portugaliae mathematica
Lettres sur la théorie des fonctions elliptiques
C. G. J. Jacobi (1869)
Annales scientifiques de l'École Normale Supérieure
Level sets of polynomials in several real variables.
Heiberg, C.H. (1983)
Publications de l'Institut Mathématique. Nouvelle Série
L'identité de Barnes pour les corps finis
Anna Helversen-Pasotto (1977/1978)
Séminaire Delange-Pisot-Poitou. Théorie des nombres
Lie Derivatives, Killing΄s Equations GegenBauer Polynomials: A Combined Use for the Evaluation of some Useful Integrals
N. Spyrou (1978)
Δελτίο της Ελληνικής Μαθηματικής Εταιρίας
Lie Theoretic Generating Functions
H. L. Manocha (1976)
Publications de l'Institut Mathématique
Lie theory and certain identities satisfied by
Wong, C.F., Narain Kesarwani, R. (1975)
Portugaliae mathematica
Linear differential equations and multiple zeta values. I. Zeta(2)
Michał Zakrzewski, Henryk Żołądek (2010)
Fundamenta Mathematicae
Certain generating fuctions for multiple zeta values are expressed as values at some point of solutions of linear meromorphic differential equations. We apply asymptotic expansion methods (like the WKB method and the Stokes operators) to solutions of these equations. In this way we give a new proof of the Euler formula ζ(2) = π²/6. In further papers we plan to apply this method to study some third order hypergeometric equation related to ζ(3).
Currently displaying 1 – 20 of 40
Page 1 Next