-function with complex parameters. I: Existence.
Mathematics Subject Classification: 44A15, 33D15, 81Q99This paper is devoted to study the q-Hankel transform associated with the third q-Bessel function called also Hahn-Exton function. We use the q- approximation of unit for establishing a q-inverse formula of this transform. Moreover, we establish the related q-Parseval theorem.
In this paper we give a solution of a problem posed by the second author in her book, namely, to find symmetrical integral transforms of Fourier type, generalizing the cos-Fourier (sin-Fourier) transform and the Hankel transform, and suitable for dealing with the hyper-Bessel differential operators of order m>1 , β>0, , j=1,...,m. We obtain such integral transforms corresponding to hyper-Bessel operators of even order 2m and belonging to the class of the Mellin convolution type transforms...
This paper is aimed to establish Hardy and Cowling-Price type theorems for the Fourier transform tied to a generalized Cherednik operator on the real line.
We develop the L² harmonic analysis for (Dirac) spinors on the real hyperbolic space Hⁿ(ℝ) and give the analogue of the classical notions and results known for functions and differential forms: we investigate the Poisson transform, spherical function theory, spherical Fourier transform and Fourier transform. Very explicit expressions and statements are obtained by reduction to Jacobi analysis on L²(ℝ). As applications, we describe the exact spectrum of the Dirac operator, study the Abel transform...
Given information about a harmonic function in two variables, consisting of a finite number of values of its Radon projections, i.e., integrals along some chords of the unit circle, we study the problem of interpolating these data by a harmonic polynomial. With the help of symbolic summation techniques we show that this interpolation problem has a unique solution in the case when the chords form a regular polygon. Numerical experiments for this and more general cases are presented.