The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1

Displaying 1 – 4 of 4

Showing per page

Valeurs zêta multiples. Une introduction

Michel Waldschmidt (2000)

Journal de théorie des nombres de Bordeaux

Soit s ̲ = ( s 1 , , s k ) un k -uplet d’entiers positifs avec k 1 . Pour s 1 2 , la série n 1 > > n k 1 n 1 - s k n k - s k converge et sa somme est notée ζ ( s ̲ ) . Dans le cas k = 1 il s’agit simplement des valeurs de la fonction zêta de Riemann aux entiers positifs. Quelles relations algébriques existent entre ces nombres ? Le produit ζ ( s ' ) ζ ( s ' ' ) de deux valeurs de fonctions zêta multiples est une combinaison linéaire de ζ ( s ̲ ) , comme on le voit facilement en multipliant les séries : c’est le produit de mélange lié aux séries. D’autre part une autre expression pour le nombre ζ ( s ̲ ) est...

Currently displaying 1 – 4 of 4

Page 1