The search session has expired. Please query the service again.
We present a hybrid finite-volume-particle numerical method for computing the transport of a passive pollutant by a flow. The flow is modeled by the one- and two-dimensional Saint-Venant system of shallow water equations and the pollutant propagation is described by a transport equation. This paper is an extension of our previous work [Chertock, Kurganov and Petrova, J. Sci. Comput. (to appear)], where the one-dimensional finite-volume-particle method has been proposed. The core idea behind the...
We present a hybrid finite-volume-particle numerical method for computing the transport of a passive pollutant by a flow. The flow is modeled by the one- and two-dimensional Saint-Venant system of shallow water equations and the pollutant
propagation is described by a transport equation.
This paper is an extension of our previous work [Chertock, Kurganov and Petrova, J. Sci. Comput.
(to appear)], where the one-dimensional finite-volume-particle method has been proposed.
The core idea behind the...
We consider the existence of extremal solutions to second order discontinuous implicit ordinary differential equations with discontinuous implicit boundary conditions in ordered Banach spaces. We also study the dependence of these solutions on the data, and cases when the extremal solutions are obtained as limits of successive approximations. Examples are given to demonstrate the applicability of the method developed in this paper.
Currently displaying 1 –
3 of
3