Existence of solutions for integrodifferential inclusions in Banach spaces.
In this paper we examine nonlinear integrodifferential inclusions defined in a separable Banach space. Using a compactness type hypothesis involving the ball measure of noncompactness, we establish two existence results. One involving convex-valued orientor fields and the other nonconvex valued ones.
Applying two three critical points theorems, we prove the existence of at least three anti-periodic solutions for a second-order impulsive differential inclusion with a perturbed nonlinearity and two parameters.
For the stochastic viability problem of the form dx(t) ∈ F(t,x(t))dt+g(t,x(t))dW(t), x(t) ∈ K(t), where K, F are set-valued maps which may have nonconvex values, g is a single-valued function, we establish the existence of solutions under the assumption that F and g possess Lipschitz property and satisfy some tangential conditions.
In this paper a fixed point theorem due to Covitz and Nadler for contraction multivalued maps, and the Schaefer’s theorem combined with a selection theorem due to Bressan and Colombo for lower semicontinuous multivalued operators with decomposables values, are used to investigate the existence of solutions for boundary value problems of fourth-order differential inclusions.
Mathematics Subject Classification: 26A33, 34A60, 34K40, 93B05In this paper we investigate the existence of solutions for fractional functional differential inclusions with infinite delay. In the last section we present an application of our main results in control theory.