Page 1 Next

Displaying 1 – 20 of 64

Showing per page

On a certain converse statement of the Filippov-Ważewski relaxation theorem

Aurelian Cernea (2001)

Commentationes Mathematicae Universitatis Carolinae

A certain converse statement of the Filippov-Wažewski theorem is proved. This result extends to the case of time dependent differential inclusions a previous result of Jo’o and Tallos in [5] obtained for autonomous differential inclusions.

On boundary value problems of second order differential inclusions

Bapur Chandra Dhage (2004)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

This paper presents sufficient conditions for the existence of solutions to boundary-value problems of second order multi-valued differential inclusions. The existence of extremal solutions is also obtained under certain monotonicity conditions.

On characterization of the solution set in case of generalized semiflow

Zdeněk Beran (2009)

Kybernetika

In the paper, a possible characterization of a chaotic behavior for the generalized semiflows in finite time is presented. As a main result, it is proven that under specific conditions there is at least one trajectory of generalized semiflow, which lies inside an arbitrary covering of the solution set. The trajectory mutually connects each subset of the covering. A connection with symbolic dynamical systems is mentioned and a possible numerical method of analysis of dynamical behavior is outlined....

On differential equations and inclusions with mean derivatives on a compact manifold

S.V. Azarina, Yu.E. Gliklikh (2007)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

We introduce and investigate a new sort of stochastic differential inclusions on manifolds, given in terms of mean derivatives of a stochastic process, introduced by Nelson for the needs of the so called stochastic mechanics. This class of stochastic inclusions is ideologically the closest one to ordinary differential inclusions. For inclusions with forward mean derivatives on manifolds we prove some results on the existence of solutions.

On differential inclusions of velocity hodograph type with Carathéodory conditions on Riemannian manifolds

Yuri E. Gliklikh, Andrei V. Obukhovski (2004)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

We investigate velocity hodograph inclusions for the case of right-hand sides satisfying upper Carathéodory conditions. As an application we obtain an existence theorem for a boundary value problem for second-order differential inclusions on complete Riemannian manifolds with Carathéodory right-hand sides.

On Differential Inclusions with Unbounded Right-Hand Side

Benahmed, S. (2011)

Serdica Mathematical Journal

2000 Mathematics Subject Classification: 58C06, 47H10, 34A60.The classical Filippov’s Theorem on existence of a local trajectory of the differential inclusion [x](t) О F(t,x(t)) requires the right-hand side F(·,·) to be Lipschitzian with respect to the Hausdorff distance and then to be bounded-valued. We give an extension of the quoted result under a weaker assumption, used by Ioffe in [J. Convex Anal. 13 (2006), 353-362], allowing unbounded right-hand side.

On four-point boundary value problems for differential inclusions and differential equations with and without multivalued moving constraints

Adel Mahmoud Gomaa (2012)

Czechoslovak Mathematical Journal

We deal with the problems of four boundary points conditions for both differential inclusions and differential equations with and without moving constraints. Using a very recent result we prove existence of generalized solutions for some differential inclusions and some differential equations with moving constraints. The results obtained improve the recent results obtained by Papageorgiou and Ibrahim-Gomaa. Also by means of a rather different approach based on an existence theorem due to O. N. Ricceri...

On fourth-order boundary-value problems

Myelkebir Aitalioubrahim (2010)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

We show the existence of solutions to a boundary-value problem for fourth-order differential inclusions in a Banach space, under Lipschitz’s contractive conditions, Carathéodory conditions and lower semicontinuity conditions.

On initial value problems for a class of first order impulsive differential inclusions

Mouffak Benchohra, Abdelkader Boucherif, Juan J. Nieto (2001)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

We investigate the existence of solutions to first order initial value problems for differential inclusions subject to impulsive effects. We shall rely on a fixed point theorem for condensing maps to prove our results.

Currently displaying 1 – 20 of 64

Page 1 Next