Ein Äquikonvergenzsatz für eine Klasse von singulären Differentialoperatoren.
This paper presents a derivation of the Rayleigh- Betti reciprocity relation for layered curved composite beams with interlayer slip. The principle of minimum of potential energy is also formulated for two-layer curved composite beams and its applications are illustrated by numerical examples. The solution of the presented problems are obtained by the Ritz method. The applications of the Rayleigh-Betti reciprocity relation proven are illustrated by some examples.
A pointwise error estimate and an estimate in norm are obtained for a class of external methods approximating boundary value problems. Dependence of a superconvergence phenomenon on the external approximation method is studied. In this general framework, superconvergence at the knot points for piecewise polynomial external methods is established.
Cauchy problem, boundary value problems with a boundary value condition and Sturm-Liouville problems related to the operator differential equation are studied for the general case, even when the algebraic equation is unsolvable. Explicit expressions for the solutions in terms of data problem are given and computable expressions of the solutions for the finite-dimensional case are made available.