New results on asymptotic behavior of solutions of certain third-order nonlinear differential equations
The problems related to periodic solutions of cellular neural networks (CNNs) involving operator and proportional delays are considered. We shall present Topology degree theory and differential inequality technique for obtaining the existence of periodic solution to the considered neural networks. Furthermore, Laypunov functional method is used for studying global asymptotic stability of periodic solutions to the above system.
In this paper we consider the equation where are real valued continuous functions on such that , and is continuous in such that for . We obtain sufficient conditions for solutions of the considered equation to be nonoscillatory. Furthermore, the asymptotic behaviour of these nonoscillatory solutions is studied.
We study relations between the almost specification property, the asymptotic average shadowing property and the average shadowing property for dynamical systems on compact metric spaces. We show implications between these properties and relate them to other important notions such as shadowing, transitivity, invariant measures, etc. We provide examples showing that compactness is a necessary condition for these implications to hold. As a consequence, we also obtain a proof that limit shadowing in...
The author considers the quasilinear differential equations By means of topological tools there are established conditions ensuring the existence of nonnegative asymptotic decaying solutions of these equations.