Periodic in distribution solution for a telegraph equation.
Using operator valued Fourier multipliers, we characterize maximal regularity for the abstract third-order differential equation αu'''(t) + u''(t) = βAu(t) + γBu'(t) + f(t) with boundary conditions u(0) = u(2π), u'(0) = u'(2π) and u''(0) = u''(2π), where A and B are closed linear operators defined on a Banach space X, α,β,γ ∈ ℝ₊, and f belongs to either periodic Lebesgue spaces, or periodic Besov spaces, or periodic Triebel-Lizorkin spaces.
Let A and M be closed linear operators defined on a complex Banach space X. Using operator-valued Fourier multiplier theorems, we obtain necessary and sufficient conditions for the existence and uniqueness of periodic solutions to the equation d/dt(Mu(t)) = Au(t) + f(t), in terms of either boundedness or R-boundedness of the modified resolvent operator determined by the equation. Our results are obtained in the scales of periodic Besov and periodic Lebesgue vector-valued spaces.
Si da un risultato di esistenza di soluzioni periodiche per una equazione di Riccati in dimensione infinita.
Let (i = 1,2) be two arbitrary bounded operators on a Banach space. We study (C₁,C₂)-regularized cosine existence and uniqueness families and their relationship to second order abstract Cauchy problems. We also prove some of their basic properties. In addition, Hille-Yosida type sufficient conditions are given for the exponentially bounded case.