On Nonlinear Equations of Evolution in Banach Spaces
We consider a nonlinear evolution inclusion driven by an m-accretive operator which generates an equicontinuous nonlinear semigroup of contractions. We establish the existence of extremal integral solutions and we show that they form a dense, -subset of the solution set of the original Cauchy problem. As an application, we obtain “bang-bang”’ type theorems for two nonlinear parabolic distributed parameter control systems.
In this paper a fixed point theorem for contraction multivalued maps due to Covitz and Nadler is used to investigate the existence of solutions for first and second order nonresonance impulsive functional differential inclusions in Banach spaces.
We prove an existence and uniqueness theorem for row-finite initial value problems. The right-hand side of the differential equation is supposed to satisfy a one-sided matrix Lipschitz condition with a quasimonotone row-finite matrix which has an at most countable spectrum.
We investigate the existence of solutions on a compact interval to second order boundary value problems for a class of functional differential inclusions in Banach spaces. We rely on a fixed point theorem for condensing maps due to Martelli.