A viability result for second-order differential inclusions.
We prove the existence of integral (stable, unstable, center) manifolds of admissible classes for the solutions to the semilinear integral equation when the evolution family has an exponential trichotomy on a half-line or on the whole line, and the nonlinear forcing term f satisfies the (local or global) φ-Lipschitz conditions, i.e., ||f(t,x)-f(t,y)|| ≤ φ(t)||x-y|| where φ(t) belongs to some classes of admissible function spaces. These manifolds are formed by trajectories of the solutions belonging...
By using the theory of strongly continuous cosine families of linear operators in Banach space the existence of solutions of a semilinear second order differential initial value problem (1) as well as the existence of solutions of the linear inhomogeneous problem corresponding to (1) are proved. The main result of the paper is contained in Theorem 5.
This paper is devoted to the investigation of the abstract semilinear initial value problem , in the “hyperbolic” case.
A general existence and uniqueness result of Picard-Lindelöf type is proved for ordinary differential equations in Fréchet spaces as an application of a generalized Nash-Moser implicit function theorem. Many examples show that the assumptions of the main result are natural. Applications are given for the Fréchet spaces , , , , for Köthe sequence spaces, and for the general class of subbinomic Fréchet algebras.