Displaying 101 – 120 of 421

Showing per page

Convergence results for nonlinear evolution inclusions

Tiziana Cardinali, Francesca Papalini (1995)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

In this paper we consider evolution inclusions of subdifferential type. First, we prove a convergence result and a continuous dependence proposition for abstract Cauchy problem of the form u' ∈ -∂⁻f(u) + G(u), u(0) = x₀, where ∂⁻f is the Fréchet subdifferential of a function f defined on an open subset Ω of a real separable Hilbert space H, taking its values in IR ∪ {+∞}, and G is a multifunction from C([0,T],Ω) into the nonempty subsets of L²([0,T],H). We obtain analogous results for the multivalued...

Differential Equations in Abstract Cones

Jankowski, Tadeusz (2000)

Serdica Mathematical Journal

We extend the method of quasilinearization to differential equations in abstract normal cones. Under some assumptions, corresponding monotone iterations converge to the unique solution of our problem and this convergence is superlinear or semi–superlinear

Differential equations in banach space and henstock-kurzweil integrals

Ireneusz Kubiaczyk, Aneta Sikorska (1999)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

In this paper, using the properties of the Henstock-Kurzweil integral and corresponding theorems, we prove the existence theorem for the equation x' = f(t,x) and inclusion x' ∈ F(t,x) in a Banach space, where f is Henstock-Kurzweil integrable and satisfies some conditions.

Epidemiological Models With Parametric Heterogeneity : Deterministic Theory for Closed Populations

A.S. Novozhilov (2012)

Mathematical Modelling of Natural Phenomena

We present a unified mathematical approach to epidemiological models with parametric heterogeneity, i.e., to the models that describe individuals in the population as having specific parameter (trait) values that vary from one individuals to another. This is a natural framework to model, e.g., heterogeneity in susceptibility or infectivity of individuals. We review, along with the necessary theory, the results obtained using the discussed approach....

Evolution differential equations in Fréchet sequence spaces

Oleg Zubelevich (2016)

Colloquium Mathematicae

We consider evolution differential equations in Fréchet spaces with unconditional Schauder basis, and construct a version of the majorant functions method to obtain existence theorems for Cauchy problems. Applications to PDE are also considered.

Evolution equations in discrete and continuous time for nonexpansive operators in Banach spaces

Guillaume Vigeral (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We consider some discrete and continuous dynamics in a Banach space involving a non expansive operator J and a corresponding family of strictly contracting operators Φ (λ, x): = λ J( 1 - λ λ x) for λ ∈ ] 0,1] . Our motivation comes from the study of two-player zero-sum repeated games, where the value of the n-stage game (resp. the value of the λ-discounted game) satisfies the relation vn = Φ( 1 n , v n - 1 ) (resp.  v λ = Φ(λ, v λ )) where J is the Shapley operator of the game. We study the evolution equation u'(t) =...

Evolution equations with parameter in the hyperbolic case

Jan Bochenek, Teresa Winiarska (1996)

Annales Polonici Mathematici

The purpose of this paper is to give theorems on continuity and differentiability with respect to (h,t) of the solution of the initial value problem du/dt = A(h,t)u + f(h,t), u(0) = u₀(h) with parameter h Ω m in the “hyperbolic” case.

Currently displaying 101 – 120 of 421