Viability Kernels and Control Sets
This paper analyzes the relation of viability kernels and control sets of control affine systems. A viability kernel describes the largest closed viability domain contained in some closed subset Q of the state space. On the other hand, control sets are maximal regions of the state space where approximate controllability holds. It turns out that the viability kernel of Q can be represented by the union of domains of attraction of chain control sets, defined relative to the given set Q. In particular,...