The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Second-order sufficient conditions of a bounded strong minimum are derived for optimal control problems of ordinary differential equations with initial-final state constraints of equality and inequality type and control constraints of inequality type. The conditions are stated in terms of quadratic forms associated with certain tuples of Lagrange multipliers. Under the assumption of linear independence of gradients of active control constraints they guarantee the bounded strong quadratic growth...
Second-order sufficient conditions of a bounded strong minimum are derived for optimal
control problems of ordinary differential equations with initial-final state constraints
of equality and inequality type and control constraints of inequality type. The conditions
are stated in terms of quadratic forms associated with certain tuples of Lagrange
multipliers. Under the assumption of linear independence of gradients of active control
constraints they...
AMS Subj. Classification: 49J15, 49M15The control problem of minimal time transition between two stationary points are
formulated in a framework of an indirect numerical method. The problem is regularized and
the monotone behavior of the regularisation procedure is investigated. Semi-smooth Newton
method applied on the regularized problems converge superlinearly and usually produce a very
accurate solution. Differently from other methods, this one does not need a-priory knowledge of
the control switching...
We consider the singularly perturbed set of periodic functional-differential matrix Riccati equations, associated with a periodic linear-quadratic optimal control problem for a singularly perturbed delay system. The delay is small of order of a small positive multiplier for a part of the derivatives in the system. A zero-order asymptotic solution to this set of Riccati equations is constructed and justified.
On considère l’équation des ondes sur un rectangle avec un feedback de type Dirichlet. On se place dans le cas où la condition de contrôle géométrique n’est pas satisfaite (BLR Condition), ce qui implique qu’on n’a pas stabilité exponentielle dans l’espace d’énérgie. On prouve qu’on peut trouver un sous espace de l’espace d’énergie tel qu’on a stabilité exponentielle. De plus, on montre un résultat de décroissance polynomiale pour toute donnée initiale régulière.
In the paper the concept of a controllable continuous flow in a metric space is introduced as a generalization of a controllable system of differential equations in a Banach space, and various kinds of stability and of boundedness of this flow are defined. Theorems stating necessary and sufficient conditions for particular kinds of stability and boundedness are formulated in terms of Ljapunov functions.
In the present paper, we consider a wave system that is fixed at one end and a boundary control input possessing a partial time delay of weight is applied over the other end. Using a simple boundary velocity feedback law, we show that the closed loop system
generates a C0 group of linear operators. After a spectral analysis, we show
that the closed loop system is a Riesz one, that is, there is a sequence of eigenvectors and
generalized eigenvectors that forms a Riesz basis for the state Hilbert...
This paper investigates adaptive switched modified function projective synchronization between two complex nonlinear hyperchaotic systems with unknown parameters. Based on adaptive control and parameter identification, corresponding adaptive controllers with appropriate parameter update laws are constructed to achieve switched modified function projective synchronization between two different complex nonlinear hyperchaotic systems and to estimate the unknown system parameters. A numerical simulation...
In this paper, we propose a new approach of designing a controller and an update rule of unknown parameters for synchronizing fractional-order system with multiple delays and prove the correctness of the approach according to the fractional Lyapunov stable theorem. Based on the proposed approach, synchronizing fractional delayed chaotic system with and without unknown parameters is realized. Numerical simulations are carried out to confirm the effectiveness of the approach.
This paper concerns the synchronization of time-delayed systems with periodic on-off coupling. Based on the stability theory and the comparison theorem of time-delayed differential equations, sufficient conditions for complete synchronization of systems with constant delay and time-varying delay are established. Compared with the results based on the Krasovskii-Lyapunov method, the sufficient conditions established in this paper are less restrictive. The theoretical results show that two time-delayed...
Currently displaying 1 –
20 of
20