Page 1

Displaying 1 – 7 of 7

Showing per page

Parameter influence on passive dynamic walking of a robot with flat feet

Xiangze Lin, Haibo Du, Shihua Li (2013)

Kybernetika

The biped robot with flat feet and fixed ankles walking down a slope is a typical impulsive dynamic system. Steady passive gaits for such mechanism can be induced on certain shallow slopes without actuation. The steady gaits can be described by using stable non-smooth limit cycles in phase plane. In this paper, it is shown that the robot gaits are affected by three parameters, namely the ground slope, the length of the foot, and the mass ratio of the robot. As the ground slope is gradually increased,...

Patchy Vector Fields and Asymptotic Stabilization

Fabio Ancona, Alberto Bressan (2010)

ESAIM: Control, Optimisation and Calculus of Variations

This paper is concerned with the structure of asymptotically stabilizing feedbacks for a nonlinear control system on n . We first introduce a family of discontinuous, piecewise smooth vector fields and derive a number of properties enjoyed by solutions of the corresponding O.D.E's. We then define a class of “patchy feedbacks” which are obtained by patching together a locally finite family of smooth controls. Our main result shows that, if a system is asymptotically controllable at the origin,...

Periodic parametric perturbation control for a 3D autonomous chaotic system and its dynamics at infinity

Zhen Wang, Wei Sun, Zhouchao Wei, Shanwen Zhang (2017)

Kybernetika

Periodic parametric perturbation control and dynamics at infinity for a 3D autonomous quadratic chaotic system are studied in this paper. Using the Melnikov's method, the existence of homoclinic orbits, oscillating periodic orbits and rotating periodic orbits are discussed after transferring the 3D autonomous chaotic system to a slowly varying oscillator. Moreover, the parameter bifurcation conditions of these orbits are obtained. In order to study the global structure, the dynamics at infinity...

Periodic stabilization for linear time-periodic ordinary differential equations

Gengsheng Wang, Yashan Xu (2014)

ESAIM: Control, Optimisation and Calculus of Variations

This paper studies the periodic feedback stabilization of the controlled linear time-periodic ordinary differential equation: ẏ(t) = A(t)y(t) + B(t)u(t), t ≥ 0, where [A(·), B(·)] is a T-periodic pair, i.e., A(·) ∈ L∞(ℝ+; ℝn×n) and B(·) ∈ L∞(ℝ+; ℝn×m) satisfy respectively A(t + T) = A(t) for a.e. t ≥ 0 and B(t + T) = B(t) for a.e. t ≥ 0. Two periodic stablization criteria for a T-period pair [A(·), B(·)] are established. One is an analytic criterion which is related to the transformation over time...

Currently displaying 1 – 7 of 7

Page 1