Existence results for second-order impulsive neutral functional differential equations with nonlocal conditions.
In this paper we prove the global existence and attractivity of mild solutions for neutral semilinear evolution equations with state-dependent delay in a Banach space.
We consider the system (ẋ(t) ≡ dx(t)/dt), where x(t) is the state, u(t) is the input, R(τ),R̃(τ) are matrix-valued functions, and F is a causal (Volterra) mapping. Such equations enable us to consider various classes of systems from the unified point of view. Explicit input-to-state stability conditions in terms of the L²-norm are derived. Our main tool is the norm estimates for the matrix resolvents, as well as estimates for fundamental solutions of the linear parts of the considered systems,...
We present a variation-of-constants formula for functional differential equations of the form where is a bounded linear operator and is a regulated function. Unlike the result by G. Shanholt (1972), where the functions involved are continuous, the novelty here is that the application is Kurzweil integrable with in an interval of , for each regulated function . This means that may admit not only many discontinuities, but it can also be highly oscillating and yet, we are able to obtain...
A class of nonlinear neutral differential equations with variable coefficients and delays is considered. Conditions for the existence of eventually positive solutions are obtained which extend some of the criteria existing in the literature. In particular, a linearized comparison theorem is obtained which establishes a connection between our nonlinear equations and a class of linear neutral equations with constant coefficients.