The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1

Displaying 1 – 1 of 1

Showing per page

Blow up for the critical gKdV equation. II: Minimal mass dynamics

Yvan Martel, Frank Merle, Pierre Raphaël (2015)

Journal of the European Mathematical Society

We consider the mass critical (gKdV) equation u t + ( u x x + u 5 ) x = 0 for initial data in H 1 . We first prove the existence and uniqueness in the energy space of a minimal mass blow up solution and give a sharp description of the corresponding blow up soliton-like bubble. We then show that this solution is the universal attractor of all solutions near the ground state which have a defocusing behavior. This allows us to sharpen the description of near soliton dynamics obtained in [29].

Currently displaying 1 – 1 of 1

Page 1