On the Cauchy problem of a quasilinear degenerate parabolic equation.
We consider one-dimensional parabolic free boundary value problem with a nonlocal (integro-differential) condition on the free boundary. Results on Cm-smoothness of the free boundary are obtained. In particular, a necessary and sufficient condition for infinite differentiability of the free boundary is given.
In this paper we consider a model of a one-dimensional body where strain depends on the history of stress. We show local existence for large data and global existence for small data of classical solutions and convergence of the displacement, strain and stress to zero for time going to infinity.