The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We deal with the boundary value problem
where is an smooth bounded domain, is the first eigenvalue of the Laplace operator with homogeneous Dirichlet boundary conditions on , and is bounded and continuous. Bifurcation theory is used as the right framework to show the existence of solution provided that satisfies certain conditions on the origin and at infinity.
We study a parameter depending semilinear elliptic PDE on a rectangle with Signorini boundary conditions on a part of one edge and mixed (zero Dirichlet and Neumann) boundary conditions on the rest of the boundary. We describe smooth branches of smooth nontrivial solutions bifurcating from the trivial solution branch in eigenvalues of the linearized problem. In particular, the contact sets of these nontrivial solutions are intervals which change smoothly along the branch. The main tools of the proof...
In this survey we collect several results concerning S-type bifurcation curves for the number of solutions of reaction-diffusion stationary equations. In particular, we recall several results in the literature for the case of stationary energy balance models.
We consider a reaction-diffusion system of the activator-inhibitor type with boundary conditions given by inclusions. We show that there exists a bifurcation point at which stationary but spatially nonconstant solutions (spatial patterns) bifurcate from the branch of trivial solutions. This bifurcation point lies in the domain of stability of the trivial solution to the same system with Dirichlet and Neumann boundary conditions, where a bifurcation of this classical problem is excluded.
Currently displaying 1 –
17 of
17