Page 1 Next

Displaying 1 – 20 of 24

Showing per page

On hyperbolic partial differential equations in Banach spaces

Bogdan Rzepecki (1986)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Viene dimostrata l'esistenza di soluzioni del problema di Darboux per l'equazione iperbolica z x y ′′ = f ( x , y , z , Z x , z y ) sul planiquarto x 0 , y 0 . Qui, f è una funzione continua, con valori in uno spazio Banach che soddisfano alcune condizioni di regolarità espresse in termini della misura di non-compattezza α .

On splitting up singularities of fundamental solutions to elliptic equations in ℂ2

T. Savina (2007)

Open Mathematics

It is known that the fundamental solution to an elliptic differential equation with analytic coefficients exists, is determined up to the kernel of the differential operator, and has singularities on characteristics of the equation in ℂ2. In this paper we construct a representation of fundamental solution as a sum of functions, each of those has singularity on a single characteristic.

On the connection between some Riemann-solver free approaches to the approximation of multi-dimensional systems of hyperbolic conservation laws

Tim Kröger, Sebastian Noelle, Susanne Zimmermann (2004)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this paper, we present some interesting connections between a number of Riemann-solver free approaches to the numerical solution of multi-dimensional systems of conservation laws. As a main part, we present a new and elementary derivation of Fey’s Method of Transport (MoT) (respectively the second author’s ICE version of the scheme) and the state decompositions which form the basis of it. The only tools that we use are quadrature rules applied to the moment integral used in the gas kinetic derivation...

On the connection between some Riemann-solver free approaches to the approximation of multi-dimensional systems of hyperbolic conservation laws

Tim Kröger, Sebastian Noelle, Susanne Zimmermann (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper, we present some interesting connections between a number of Riemann-solver free approaches to the numerical solution of multi-dimensional systems of conservation laws. As a main part, we present a new and elementary derivation of Fey's Method of Transport (MoT) (respectively the second author's ICE version of the scheme) and the state decompositions which form the basis of it. The only tools that we use are quadrature rules applied to the moment integral used in the...

On the integral representation of superbiharmonic functions

Ali Abkar (2007)

Czechoslovak Mathematical Journal

We consider a nonnegative superbiharmonic function w satisfying some growth condition near the boundary of the unit disk in the complex plane. We shall find an integral representation formula for w in terms of the biharmonic Green function and a multiple of the Poisson kernel. This generalizes a Riesz-type formula already found by the author for superbihamonic functions w satisfying the condition 0 w ( z ) C ( 1 - | z | ) in the unit disk. As an application we shall see that the polynomials are dense in weighted Bergman...

Currently displaying 1 – 20 of 24

Page 1 Next