Semiclassical fundamental solutions.
For open sets with a piecewise smooth boundary it is shown that a solution of the Dirichlet problem for the Laplace equation can be expressed in the form of the sum of the single layer potential and the double layer potential with the same density, where this density is given by a concrete series.
2000 Mathematics Subject Classification: 35C15, 35D05, 35D10, 35S10, 35S99.We give here examples of equations of type (1) ∂tt2 y -p(t, Dx) y = 0, where p is a singular pseudo-differential operator with regular global solutions when the Cauchy data are regular, t ∈ R, x ∈ R5.
A nonlinear equation in 2 variables is considered. A formal solution as a series of Laplace integrals is constructed. It is shown that assuming some properties of Char P, one gets the Gevrey class of such solutions. In some cases convergence “at infinity” is proved.