Displaying 361 – 380 of 734

Showing per page

On similarity solution of a boundary layer problem for power-law fluids

Gabriella Bognár (2012)

Mathematica Bohemica

The boundary layer equations for the non-Newtonian power law fluid are examined under the classical conditions of uniform flow past a semi infinite flat plate. We investigate the behavior of the similarity solution and employing the Crocco-like transformation we establish the power series representation of the solution near the plate.

On splitting up singularities of fundamental solutions to elliptic equations in ℂ2

T. Savina (2007)

Open Mathematics

It is known that the fundamental solution to an elliptic differential equation with analytic coefficients exists, is determined up to the kernel of the differential operator, and has singularities on characteristics of the equation in ℂ2. In this paper we construct a representation of fundamental solution as a sum of functions, each of those has singularity on a single characteristic.

On the approximation of real continuous functions by series of solutions of a single system of partial differential equations

Carsten Elsner (2006)

Colloquium Mathematicae

We prove the existence of an effectively computable integer polynomial P(x,t₀,...,t₅) having the following property. Every continuous function f : s can be approximated with arbitrary accuracy by an infinite sum r = 1 H r ( x , . . . , x s ) C ( s ) of analytic functions H r , each solving the same system of universal partial differential equations, namely P ( x σ ; H r , H r / x σ , . . . , H r / x σ ) = 0 (σ = 1,..., s).

On the asymptotics of solutions to the second initial boundary value problem for Schrödinger systems in domains with conical points

Nguyen Manh Hung, Hoang Viet Long, Nguyen Thi Kim Son (2013)

Applications of Mathematics

In this paper, for the second initial boundary value problem for Schrödinger systems, we obtain a performance of generalized solutions in a neighborhood of conical points on the boundary of the base of infinite cylinders. The main result are asymptotic formulas for generalized solutions in case the associated spectrum problem has more than one eigenvalue in the strip considered.

On the connection between some Riemann-solver free approaches to the approximation of multi-dimensional systems of hyperbolic conservation laws

Tim Kröger, Sebastian Noelle, Susanne Zimmermann (2004)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this paper, we present some interesting connections between a number of Riemann-solver free approaches to the numerical solution of multi-dimensional systems of conservation laws. As a main part, we present a new and elementary derivation of Fey’s Method of Transport (MoT) (respectively the second author’s ICE version of the scheme) and the state decompositions which form the basis of it. The only tools that we use are quadrature rules applied to the moment integral used in the gas kinetic derivation...

On the connection between some Riemann-solver free approaches to the approximation of multi-dimensional systems of hyperbolic conservation laws

Tim Kröger, Sebastian Noelle, Susanne Zimmermann (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper, we present some interesting connections between a number of Riemann-solver free approaches to the numerical solution of multi-dimensional systems of conservation laws. As a main part, we present a new and elementary derivation of Fey's Method of Transport (MoT) (respectively the second author's ICE version of the scheme) and the state decompositions which form the basis of it. The only tools that we use are quadrature rules applied to the moment integral used in the...

On the controllability of fractional dynamical systems

Krishnan Balachandran, Jayakumar Kokila (2012)

International Journal of Applied Mathematics and Computer Science

This paper is concerned with the controllability of linear and nonlinear fractional dynamical systems in finite dimensional spaces. Sufficient conditions for controllability are obtained using Schauder's fixed point theorem and the controllability Grammian matrix which is defined by the Mittag-Leffler matrix function. Examples are given to illustrate the effectiveness of the theory.

On the eigenfunction expansion method for semilinear dissipative equations in bounded domains and the Kuramoto-Sivashinsky equation in a ball

V. V. Varlamov (2001)

Studia Mathematica

Presented herein is a method of constructing solutions of semilinear dissipative evolution equations in bounded domains. For small initial data this approach permits one to represent the solution in the form of an eigenfunction expansion series and to calculate the higher-order long-time asymptotics. It is applied to the spatially 3D Kuramoto-Sivashinsky equation in the unit ball B in the linearly stable case. A global-in-time mild solution is constructed in the space C ( [ 0 , ) , H s ( B ) ) , s < 2, and the uniqueness...

Currently displaying 361 – 380 of 734