Page 1 Next

Displaying 1 – 20 of 48

Showing per page

The asymptotic behaviour of surfaces with prescribed mean curvature near meeting points of fixed and free boundaries

Frank Müller (2007)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

We study the shape of stationary surfaces with prescribed mean curvature in the Euclidean 3-space near boundary points where Plateau boundaries meet free boundaries. In deriving asymptotic expansions at such points, we generalize known results about minimal surfaces due to G. Dziuk. The main difficulties arise from the fact that, contrary to minimal surfaces, surfaces with prescribed mean curvature do not meet the support manifold perpendicularly along their free boundary, in general.

The interface crack with Coulomb friction between two bonded dissimilar elastic media

Hiromichi Itou, Victor A. Kovtunenko, Atusi Tani (2011)

Applications of Mathematics

We study a model of interfacial crack between two bonded dissimilar linearized elastic media. The Coulomb friction law and non-penetration condition are assumed to hold on the whole crack surface. We define a weak formulation of the problem in the primal form and get the equivalent primal-dual formulation. Then we state the existence theorem of the solution. Further, by means of Goursat-Kolosov-Muskhelishvili stress functions we derive convergent expansions of the solution near the crack tip.

The level crossing problem in semi-classical analysis I. The symmetric case

Yves Colin de Verdière (2003)

Annales de l’institut Fourier

We describe a microlocal normal form for a symmetric system of pseudo-differential equations whose principal symbol is a real symmetric matrix with a generic crossing of eigenvalues. We use it in order to give a precise description of the microlocal solutions.

Currently displaying 1 – 20 of 48

Page 1 Next