Page 1

Displaying 1 – 17 of 17

Showing per page

A calculus for a class of finitely degenerate pseudodifferential operators

Ingo Witt (2003)

Banach Center Publications

For a class of degenerate pseudodifferential operators, local parametrices are constructed. This is done in the framework of a pseudodifferential calculus upon adding conditions of trace and potential type, respectively, along the boundary on which the operators degenerate.

A characterization of elliptic operators

Grzegorz Łysik, Paweł M. Wójcicki (2014)

Annales Polonici Mathematici

We give a characterization of constant coefficients elliptic operators in terms of estimates of their iterations on smooth functions.

A New Proof of Okaji’s Theorem for a Class of Sum of Squares Operators

Paulo D. Cordaro, Nicholas Hanges (2009)

Annales de l’institut Fourier

Let P be a linear partial differential operator with analytic coefficients. We assume that P is of the form “sum of squares”, satisfying Hörmander’s bracket condition. Let q be a characteristic point for P . We assume that q lies on a symplectic Poisson stratum of codimension two. General results of Okaji show that P is analytic hypoelliptic at q . Hence Okaji has established the validity of Treves’ conjecture in the codimension two case. Our goal here is to give a simple, self-contained proof of...

A note on lifting of Carnot groups.

Andrea Bonfiglioli, Francesco Uguzzoni (2005)

Revista Matemática Iberoamericana

We prove that every homogeneous Carnot group can be lifted to a free homogeneous Carnot group. Though following the ideas of Rothschild and Stein, we give simple and self-contained arguments, providing a constructive proof, as shown in the examples.

A Paley-Wiener type theorem for generalized non-quasianalytic classes

Jordi Juan-Huguet (2012)

Studia Mathematica

Let P be a hypoelliptic polynomial. We consider classes of ultradifferentiable functions with respect to the iterates of the partial differential operator P(D) and prove that such classes satisfy a Paley-Wiener type theorem. These classes and the corresponding test spaces are nuclear.

A subelliptic Bourgain–Brezis inequality

Yi Wang, Po-Lam Yung (2014)

Journal of the European Mathematical Society

We prove an approximation lemma on (stratified) homogeneous groups that allows one to approximate a function in the non-isotropic Sobolev space N L ˙ 1 , Q by L functions, generalizing a result of Bourgain–Brezis. We then use this to obtain a Gagliardo–Nirenberg inequality for on the Heisenberg group n .

Addition de variables et application à la régularité

Bernard Helffer (1978)

Annales de l'institut Fourier

On montre dans cet article comment des théorèmes récents d’hypoellipticité ou de propagation des singularités peuvent être améliorés par une méthode d’addition de variables qui permet dans certains cas de “désingulariser” l’ensemble caractéristique.

Approximation of solutions of Hamilton-Jacobi equations on the Heisenberg group

Yves Achdou, Italo Capuzzo-Dolcetta (2008)

ESAIM: Mathematical Modelling and Numerical Analysis

We propose and analyze numerical schemes for viscosity solutions of time-dependent Hamilton-Jacobi equations on the Heisenberg group. The main idea is to construct a grid compatible with the noncommutative group geometry. Under suitable assumptions on the data, the Hamiltonian and the parameters for the discrete first order scheme, we prove that the error between the viscosity solution computed at the grid nodes and the solution of the discrete problem behaves like h where h is the mesh step. Such...

Currently displaying 1 – 17 of 17

Page 1