The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
For a class of degenerate pseudodifferential operators, local parametrices are constructed. This is done in the framework of a pseudodifferential calculus upon adding conditions of trace and potential type, respectively, along the boundary on which the operators degenerate.
We give a characterization of constant coefficients elliptic operators in terms of estimates of their iterations on smooth functions.
Let be a linear partial differential operator with analytic coefficients. We assume that is of the form “sum of squares”, satisfying Hörmander’s bracket condition. Let be a characteristic point for . We assume that lies on a symplectic Poisson stratum of codimension two. General results of Okaji show that is analytic hypoelliptic at . Hence Okaji has established the validity of Treves’ conjecture in the codimension two case. Our goal here is to give a simple, self-contained proof of...
We prove that every homogeneous Carnot group can be lifted to a free homogeneous Carnot group. Though following the ideas of Rothschild and Stein, we give simple and self-contained arguments, providing a constructive proof, as shown in the examples.
Let P be a hypoelliptic polynomial. We consider classes of ultradifferentiable functions with respect to the iterates of the partial differential operator P(D) and prove that such classes satisfy a Paley-Wiener type theorem. These classes and the corresponding test spaces are nuclear.
We prove an approximation lemma on (stratified) homogeneous groups that allows one to approximate a function in the non-isotropic Sobolev space by functions, generalizing a result of Bourgain–Brezis. We then use this to obtain a Gagliardo–Nirenberg inequality for on the Heisenberg group .
On montre dans cet article comment des théorèmes récents d’hypoellipticité ou de propagation des singularités peuvent être améliorés par une méthode d’addition de variables qui permet dans certains cas de “désingulariser” l’ensemble caractéristique.
We discuss the open problem of analytic hypoellipticity for sums of squares of vector fields, including some recent partial results and a conjecture of Treves.
We propose and analyze numerical schemes for viscosity solutions of time-dependent Hamilton-Jacobi equations on the Heisenberg group.
The main idea is to construct a grid compatible with the noncommutative group geometry. Under suitable assumptions on the data, the Hamiltonian and the parameters for the discrete first order scheme,
we prove that the error between the viscosity solution computed at the grid nodes and the solution of the discrete problem behaves like where h is the mesh step. Such...
Currently displaying 1 –
17 of
17