Weak Bloch property and weight estimates for elliptic operators
We investigate the -spectrum of linear operators defined consistently on for p₀ ≤ p ≤ p₁, where (Ω,μ) is an arbitrary σ-finite measure space and 1 ≤ p₀ < p₁ ≤ ∞. We prove p-independence of the -spectrum assuming weighted norm estimates. The assumptions are formulated in terms of a measurable semi-metric d on (Ω,μ); the balls with respect to this semi-metric are required to satisfy a subexponential volume growth condition. We show how previous results on -spectral independence can be treated...