Non-trapping condition for semiclassical Schrödinger operators with matrix-valued potentials.
In the case of an elastic strip we exhibit two properties of dispersion curves λn,n ≥ 1, that were not pointed out previously. We show cases where λ'n(0) = λ''n(0) = λ'''n(0) = 0 and we point out that these curves are not automatically monotoneous on . The non monotonicity was an open question (see [2], for example) and, for the first time, we give a rigourous answer. Recall the characteristic property of the dispersion curves: {λn(p);n ≥ 1} is the set of eigenvalues of Ap, counted with their...